基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高压断路器分合闸过程中的触头行程曲线蕴含着反映其内部机构机械状态的丰富信息,是实现其状态识别和故障诊断的重要依据.文中提出了一种基于主成分分析和支持向量机的高压断路器机械状态识别方法,基于奇异值分解计算特征量的主成分,降低特征量的维度,筛选出包含主要信息的特征矩阵,然后基于特征矩阵构建支持向量机,结合交叉验证网格搜索确定最优参数,进而确定最优分类模型.对实验数据的分析结果表明,该方法可以有效提取触头行程曲线中蕴含的特征信息,准确度高达99%,可以实现对高压断路器机械状态的识别.
推荐文章
基于主成分分析的最小二乘支持向量机岩性识别方法
测井解释
岩性识别
主成分分析
最小二乘支持向量机
累积方差
基于核主元分析的支持向量机识别方法研究
核主元分析
支持向量机
分类
识别
基于主成分分析和支持向量机的参数费用模型
主成分分析
支持向量机
参数费用模型
神经网络
基于主成分分析和支持向量机的作战飞机效能评估
主成分分析
支持向量机
效能
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主成分分析和支持向量机的高压断路器机械状态识别方法
来源期刊 高压电器 学科
关键词 高压断路器 机械状态识别 主成分分析 奇异值分解 支持向量机
年,卷(期) 2020,(9) 所属期刊栏目 技术讨论
研究方向 页码范围 267-272,278
页数 7页 分类号
字数 语种 中文
DOI 10.13296/j.1001-1609.hva.2020.09.039
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (102)
共引文献  (107)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(16)
  • 参考文献(2)
  • 二级参考文献(14)
2011(24)
  • 参考文献(2)
  • 二级参考文献(22)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(11)
  • 参考文献(4)
  • 二级参考文献(7)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高压断路器
机械状态识别
主成分分析
奇异值分解
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高压电器
月刊
1001-1609
61-1127/TM
大16开
西安市西二环北段18号
52-36
1958
chi
出版文献量(篇)
5932
总下载数(次)
16
论文1v1指导