基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对多标记学习分类问题,算法适应方法将其转化为排序问题,并将输出标记按照其与示例的相关性进行排序,该类方法取得了较好的分类效果.基于间隔准则提出一种多标记学习算法,通过优化模型在示例的相关标记集合中最小输出与不相关标记集合中最大输出的间隔损失来进行标记排序.在此基础上,为充分利用全部标记信息,提出一种改进的优化排序多标记学习算法,分别优化模型在示例的相关标记集合中平均输出与不相关标记集合中最大输出的间隔损失,以及优化模型在相关标记集合中最小输出与不相关标记集合中平均输出的间隔损失,从而实现标记排序.在模型的参数学习过程中,使用改进的次梯度Pegasos算法进行优化.将所提2种算法与ML-RBF、BP-MLL、ML-KNN多标记学习算法在4个多标记数据集上进行对比实验,结果表明,在HL、RL等5种不同的评价准则下,2种算法均能与对比算法取得相近的分类性能.
推荐文章
基于GEP多标记学习的图像超分辨率复原算法
超分辨率复原
基因表达式编程
支持向量机
样本学习
用于多标记学习的K近邻改进算法
分类
K近邻
取样
多标记学习
多标记学习研究综述
多标记学习
机器学习
问题转换
算法改进
评估措施
用于多标记学习的局部顺序分类器链算法
多标记学习
标记相关性
分类器链
K-近邻
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于间隔准则的优化排序多标记学习算法
来源期刊 计算机工程 学科 工学
关键词 多标记学习 算法适应 标记排序 平均输出 间隔准则 Pegasos算法
年,卷(期) 2020,(7) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 104-109
页数 6页 分类号 TP391
字数 5868字 语种 中文
DOI 10.19678/j.issn.1000-3428.0054652
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张正军 南京理工大学理学院 33 477 7.0 21.0
2 颜子寒 南京理工大学理学院 3 4 1.0 2.0
3 王雅萍 南京理工大学理学院 3 4 1.0 2.0
4 金亚洲 南京理工大学理学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (30)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标记学习
算法适应
标记排序
平均输出
间隔准则
Pegasos算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导