原文服务方: 纺织导报       
摘要:
针对人体胸腰部检测,文章提出一种深度学习的方法对人体胸腰部图像进行目标检测.首先,选用SSD目标检测算法模型(Single Shot MultiBox Detector)并进行微调;其次,利用男性全身图片对该模型进行训练;最后,利用训练完成的模型对人体胸腰部进行识别和定位,并与Mask-RCNN算法模型训练速度和精度进行对比.结果表明,虽然Mask-RCNN算法模型运行速度较快,但SSD目标检测算法相对能够更准确地识别和定位人体胸腰部,准确度达到91.6%,能够有效提高远程在线量身定制中人体胸腰部尺寸检测的准确度.
推荐文章
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
基于深度学习的轻量型人体动作识别模型
深度学习
图像处理
卷积神经网络
动作识别
基于深度学习的人体姿态估计方法综述
人体姿态估计
深度学习
关节点坐标
人体模型
检测回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的人体胸腰部检测
来源期刊 纺织导报 学科
关键词 深度学习 SSD算法 Mask-RCNN算法 定位及识别 胸腰部 在线量身定制
年,卷(期) 2020,(11) 所属期刊栏目 服装工程
研究方向 页码范围 76-78
页数 3页 分类号 TS941.17
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢红 61 285 11.0 14.0
2 刘晓音 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (5)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
SSD算法
Mask-RCNN算法
定位及识别
胸腰部
在线量身定制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
纺织导报
双月刊
1003-3025
11-1714/TS
大16开
1983-01-01
中文
出版文献量(篇)
6682
总下载数(次)
0
总被引数(次)
19663
论文1v1指导