基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高年径流预测的精度,以呼兰河下游兰西水文站1959-2014年的年径流数据作为输出,相应的流域气象数据作为输入,将BP神经网络和支持向量机(SVM)相结合,构建基于马尔科夫链修正的BP-SVM预测模型,运用该模型对呼兰河流域的年径流进行预测.采用哈里斯鹰群算法(HHO)优化支持向量机参数,构建HHO-SVM模型,并进行年径流预测,利用训练好的BP神经网络对年径流进行预测,分别运用马尔科夫链对两种模型的预测结果进行修正,通过最小二乘法确定模型组合权重,将两模型的预测结果进行组合,得到最终的年径流预测值.研究结果表明:HHO-SVM模型预测结果优于BP神经网络预测值;经马尔科夫链修正后,BP神经网络预测值精度提高较大,经最小二乘法组合后的预测结果平均相对误差为11.36%,确定性系数为0.95,合格率达90.91%.哈里斯鹰群算法(HHO)能较好的解决支持向量机参数优化问题,马尔科夫链的修正在一定程度能提高了各个模型的预测精度,提出的混合模型为年径流预测提供了一种新的方法.
推荐文章
基于灰色马尔科夫链模型的CT球管故障间隔期预测
灰色GM(1,1)模型
灰色马尔科夫链模型
球管
故障间隔期
预测
船舶交通量的BP神经网络-马尔科夫预测模型
船舶交通量
BP神经网络
马尔科夫预测模型
基于改进马尔科夫链的移动轨迹预测方法
移动轨迹预测
无人驾驶
马尔科夫链
路况信息
智能交通
基于马尔科夫模型的港口吞吐量预测
港口吞吐量
马尔科夫模型
大连港
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于马尔科夫链的BP-SVM模型的径流预测
来源期刊 水利水电技术 学科 工学
关键词 BP神经网络 HHO-SVM模型 马尔科夫链 径流预报 模型耦合
年,卷(期) 2020,(11) 所属期刊栏目 水文水资源
研究方向 页码范围 78-84
页数 7页 分类号 TV124
字数 语种 中文
DOI 10.13928/j.cnki.wrahe.2020.11.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑野 13 14 2.0 3.0
2 王文川 81 387 11.0 17.0
3 徐冬梅 48 245 10.0 14.0
4 张洁铭 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (154)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(6)
  • 参考文献(2)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(10)
  • 参考文献(0)
  • 二级参考文献(10)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(12)
  • 参考文献(1)
  • 二级参考文献(11)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
HHO-SVM模型
马尔科夫链
径流预报
模型耦合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水利水电技术
月刊
1000-0860
11-1757/TV
大16开
北京市海淀区玉渊潭南路3号
2-426
1959
chi
出版文献量(篇)
7729
总下载数(次)
10
总被引数(次)
49620
论文1v1指导