基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
控制系统的应用中存在状态不能直接测量或测量成本高的实际问题,给模型参数未知的系统完全利用状态数据学习最优控制器带来挑战性难题.为解决这一问题,首先构建具有状态观测器且系统矩阵中存在未知参数的离散线性增广系统,定义性能优化指标;然后基于分离定理、动态规划以及Q-学习方法,给出一种具有未知模型参数的非策略Q-学习算法,并设计近似最优观测器,得到完全利用可测量的系统输出和控制输入数据的非策略Q-学习算法,实现基于观测器状态反馈的系统优化控制策略,该算法的优点在于不要求系统模型参数全部已知,不要求系统状态直接可测,利用可测量数据实现指定性能指标的优化;最后,通过仿真实验验证所提出方法的有效性.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 参数未知的离散系统Q-学习优化状态估计与控制
来源期刊 控制与决策 学科 工学
关键词 非策略Q-学习 最优控制 状态观测器 分离定理 离散系统 近似动态规划
年,卷(期) 2020,(12) 所属期刊栏目 论文与报告
研究方向 页码范围 2889-2897
页数 9页 分类号 TP13
字数 语种 中文
DOI 10.13195/j.kzyjc.2019.0180
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李金娜 28 103 6.0 9.0
2 马士凯 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (18)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非策略Q-学习
最优控制
状态观测器
分离定理
离散系统
近似动态规划
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制与决策
月刊
1001-0920
21-1124/TP
大16开
沈阳东北大学125信箱
1986
chi
出版文献量(篇)
7031
总下载数(次)
20
总被引数(次)
141238
论文1v1指导