基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
结合卷积神经网络C N N和最小门控单元MGU各自的优势,融合注意力机制,提出注意力C_MGU神经网络模型.通过CNN的卷积层模块捕捉提取文本的初步特征表示,利用Attention机制和MGU模块对文本的初步特征表示进行关键信息的加强和优化,并将生成的文本深层特征表示输入到Softmax层进行回归处理.对公开数据集IMBD、Sentiment140进行情感分类实验,结果表明该模型能够强化对文本的句义理解,可进一步学习序列相关特征,有效地提高情感分类的准确率.
推荐文章
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
采用循环神经网络的情感分析注意力模型
情感分析
循环神经网络
注意力
长短时记忆
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合卷积神经网络和最小门控单元注意力的文本情感分析
来源期刊 计算机应用与软件 学科 工学
关键词 情感分析 C_MGU 注意力机制
年,卷(期) 2020,(9) 所属期刊栏目 人工智能与识别
研究方向 页码范围 75-80,125
页数 7页 分类号 TP391.1
字数 4761字 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.09.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐菲菲 上海电力大学计算机科学与技术学院 15 157 6.0 12.0
2 芦霄鹏 上海电力大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (95)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1952(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
情感分析
C_MGU
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导