原文服务方: 计算机应用研究       
摘要:
为提高多目标差分进化算法求解多目标优化问题的能力,提出一种基于策略自适应的多目标差分进化算法(multi-objective differential evolution algorithm based on self-adaptive strategy,MODE-SS).该算法采用超体积(hyper-volume,HV)对变异策略进行性能评价,并实现变异策略的自动选择;使用动态调整的二项式交叉策略和模拟二进制交叉(simulated binary crossover,SBX)策略实现全局搜索与局部搜索的平衡.通过与其他六种多目标进化算法在10个测试函数上的性能比较,结果表明MODE-SS算法的整体性能要好于其他所比较算法.最后,将MODE-SS算法用于求解海铁联运能耗优化问题,所得结果能够为决策者提供多种可行方案.
推荐文章
基于强度Pareto的自适应多目标差分进化算法
多目标优化
差分进化算法
强度Pareto
基于多策略排序变异的多目标差分进化算法
多目标优化
多策略差分进化
排序变异算子
自适应参数调整
基于多策略自适应差分进化算法的污水处理过程多目标优化控制
污水处理
多目标优化控制
差分进化算法
自适应更新
多策略
基于分解和多策略变异的多目标差分进化算法
多目标优化
差分进化
分解
多策略变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于策略自适应的多目标差分进化算法及其应用
来源期刊 计算机应用研究 学科
关键词 差分进化 多目标优化 自适应 海铁联运 能耗优化
年,卷(期) 2020,(7) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2016-2021
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.12.0931
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王维莉 上海海事大学物流研究中心 9 11 2.0 3.0
2 范勤勤 上海海事大学物流研究中心 10 17 2.0 4.0
4 毕超超 上海海事大学物流研究中心 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (95)
共引文献  (13)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1937(1)
  • 参考文献(1)
  • 二级参考文献(0)
1945(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(24)
  • 参考文献(3)
  • 二级参考文献(21)
2015(14)
  • 参考文献(2)
  • 二级参考文献(12)
2016(13)
  • 参考文献(3)
  • 二级参考文献(10)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
差分进化
多目标优化
自适应
海铁联运
能耗优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导