基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着深度学习的快速发展,基于深度学习的场景识别方法逐渐取代传统的基于手工特征的场景识别方法,成为未来研究的主要方向.针对基于深度学习的场景识别方法,对基本思想进行了总结,将其大体分为以下四类:深度学习与视觉词袋结合场景识别法、基于显著部分的场景识别法、多层特征融合场景识别法、融合知识表示的场景识别法,分析了各个方法的特点及局限性,并对识别效果进行了比较,最后对未来研究方向进行展望.
推荐文章
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
基于深度学习的盾构隧道衬砌病害识别方法
盾构隧道
衬砌病害
深度学习
卷积神经网络
图像分类
基于集成深度学习的玻璃缺陷识别方法
卷积神经网络
玻璃缺陷识别
KSVD算法
稀疏自编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的场景识别方法综述
来源期刊 计算机工程与应用 学科 工学
关键词 场景识别 深度学习 视觉词袋 显著目标 多层特征融合 语义关系
年,卷(期) 2020,(5) 所属期刊栏目 热点与综述
研究方向 页码范围 25-33
页数 9页 分类号 TP391
字数 7257字 语种 中文
DOI 10.3778/j.issn.1002-8331.1912-0176
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 麻丽娜 华北电力大学科技学院 9 34 3.0 5.0
2 李新叶 华北电力大学电子与通信工程系 36 314 11.0 16.0
3 朱婧 华北电力大学电子与通信工程系 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (16)
参考文献  (29)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(18)
  • 参考文献(12)
  • 二级参考文献(6)
2018(7)
  • 参考文献(6)
  • 二级参考文献(1)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
场景识别
深度学习
视觉词袋
显著目标
多层特征融合
语义关系
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导