基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
生物认证是信息安全领域研究的热点问题,已经成为社会安全各个领域用于身份识别的重要技术手段.随着数字图像获取技术和采集设备的快速发展,生物认证图像数据在采集过程中往往会出现高维度、高冗余现象.为了解决生物认证数据在计算过程中出现的维度高、冗余信息多、计算复杂度高的问题,在生物数据处理过程中构建了基于特征子集与特征区分度的特征选择方法.该方法首先利用改进的随机子空间方法和费舍尔得分法分别对特征排序;然后,将两种方法选择的特征结果进行加权融合得到全新的特征排序;最后,利用顺序前向搜索策略进行特征选择.为验证方法的有效性,将该方法与传统方法分别在五个经典的生物认证数据库上进行了比较.实验结果证明该方法获得了非常高的识别准确度.
推荐文章
基于遗传算法的特征子集选择方法
数据挖掘
特征子集选择
遗传算法
人工智能
基于RLWE的生物特征认证密钥交换协议
环上误差学习
认证密钥交换协议
口令
生物特征
基于多生物特征识别的网络身份认证研究
网络安全
身份认证
多生物特征识别
基于互信息的特征子集选择
数据挖掘
LV算法
特征子集选择
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征子集与特征区分度的生物认证方法
来源期刊 计算机技术与发展 学科 工学
关键词 特征选择 随机子空间 费舍尔得分 生物认证 特征融合
年,卷(期) 2020,(12) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 51-55
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.12.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (6)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
随机子空间
费舍尔得分
生物认证
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导