基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对K-means算法随机选择初始聚类中心,对噪音和异常点比较敏感,聚类结果过多依赖于专家经验从而缺乏一定客观性的问题,提出一种新的度量样本密度的方法优化K-means算法对初始聚类中心的选择.该方法基于样本实际分布,以最优超球体中样本个数与超球体中样本相似性作为度量样本密度的关键,能够有效选出较优的聚类中心,使得选择的初始聚类中心更接近样本集的实际分布.算法在乳腺癌数据集、常用UCI数据集以及人工模拟数据集上进行测试,实验结果表明,与已有同类方法相比,该算法在各数据集上的聚类评价指标均有提高,而且运行速度更快,聚类结果更稳定,聚类准确率更高:在乳腺癌数据集wdbc上的准确率为91.04%,提高了6%.在Iris数据集上的准确率为94%,提高了5%.
推荐文章
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
基于密度的K-means聚类中心选取的优化算法
K-均值
数据挖掘
聚类中心
垂直中点
密度
一种基于密度的k-means聚类算法
聚类
k-means
信息熵
近邻密度
孤立点
基于聚类中心优化的k-means最佳聚类数确定方法
k-means聚类
初始聚类中心
样本密度
聚类数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度优化初始聚类中心的K-means算法
来源期刊 计算机技术与发展 学科 工学
关键词 K-means算法 密度 去噪 最优超球体 均方差 噪声数据
年,卷(期) 2020,(12) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 99-105
页数 7页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.12.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (997)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(7)
  • 参考文献(1)
  • 二级参考文献(6)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
密度
去噪
最优超球体
均方差
噪声数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导