基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高真实场景下头部姿态估计的准确性,提出一种采用深度残差网络的头部姿态估计方法.将深度残差网络RestNet101作为主干网络,引入优化器提高深层卷积网络训练时的梯度稳定性,使用RGB图像并采用分类器计算交叉熵损失,同时结合回归损失预测欧拉角表示头部姿态.实验结果表明,与FAN地标检测方法和无关键点细粒度方法相比,该方法在AFLW2000数据集和BIWI数据集上的平均绝对误差值更小,分别达到5.396和2.922,在300W_LP数据集上测试精度超过95%,在真实场景下具有较好的鲁棒性.
推荐文章
基于深度残差网络ResNet的废料瓶分类系统
废料瓶分类
Opencv
深度学习
ResNet18
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
组合深度残差网络手势识别
手势识别
残差网络
肤色模型
深度学习
迁移学习
人机交互
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度残差网络的多损失头部姿态估计
来源期刊 计算机工程 学科 工学
关键词 深度残差网络 欧拉角 梯度优化 回归损失 姿态估计
年,卷(期) 2020,(12) 所属期刊栏目 图形图像处理
研究方向 页码范围 247-253
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0056176
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (10)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(7)
  • 参考文献(4)
  • 二级参考文献(3)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度残差网络
欧拉角
梯度优化
回归损失
姿态估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
论文1v1指导