基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本生成是人工智能和自然语言处理领域中一项热门研究的课题,作为一种在自然语言文本生成方面广泛应用的网络,长短期记忆网络(Long Short-Term Memory,LSTM)可以解决在训练传统循环神经网络(Recurrent Neural Network,RNN)时可能遇到的梯度消失问题.对于间隙长度的相对不敏感性是LSTM相对于RNN,隐马尔可夫模型和其他序列学习方法在许多应用中的优势.本文通过采用带门结构的LSTM生成许嵩风格歌词的模型,使机器具有初步模拟人类创作歌词的能力.实验结果表明,LSTM具有良好的歌词文本自动生成效果.
推荐文章
基于生成模型的图像风格迁移设计与实现
图像风格迁移
生成模型
生成网络
VGG网络
基于生成对抗网络的照片动漫风格化
图像风格化
生成对抗网络
AnimeGAN
VGG模型
Pytorch
Tensorflow
基于生成式对抗网络的中文字体风格迁移
风格迁移
生成式对抗网络
卷积神经网络
残差网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM的许嵩风格歌词生成
来源期刊 网络安全技术与应用 学科
关键词 RNN LSTM 文本生成 自然语言处理
年,卷(期) 2020,(8) 所属期刊栏目 安全模型、算法与编程
研究方向 页码范围 49-52
页数 4页 分类号
字数 2653字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (12)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RNN
LSTM
文本生成
自然语言处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导