钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机工程与应用期刊
\
基于MCFFN-Attention的高光谱图像分类
基于MCFFN-Attention的高光谱图像分类
作者:
程文娟
陈文强
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
高光谱图像分类
多尺度
特征融合
注意力机制
摘要:
针对高光谱图像高维度的特性和样本数量少的局限性,提出了一个多尺度跨层特征融合注意力机制(MCFFN-Attention)的方法.对高光谱图像进行PCA降维,然后以3D CNN为基础,将中心像素和其相邻像素作为整体输入到网络中,对不同卷积层得到的特征进行融合.同时对融合的低层特征进行空间注意力机制处理,对融合的高层特征进行通道注意力机制处理,分配给它们不同的权重来优化特征图.在印第安松树和帕维亚大学数据集上进行实验,结果表明此方法相对于CNN、3D CNN和M3D CNN方法,分类精度得到了提升.
暂无资源
收藏
引用
分享
推荐文章
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
基于DS聚类的高光谱图像集成分类算法
优势集
聚类
集成
支持向量机
高光谱图像分类
基于DE-GEP的高光谱遥感图像分类
遥感图像
演化算法
波段选择
分类
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于MCFFN-Attention的高光谱图像分类
来源期刊
计算机工程与应用
学科
工学
关键词
高光谱图像分类
多尺度
特征融合
注意力机制
年,卷(期)
2020,(24)
所属期刊栏目
图形图像处理
研究方向
页码范围
201-206
页数
6页
分类号
TP391.41
字数
语种
中文
DOI
10.3778/j.issn.1002-8331.1911-0102
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
程文娟
45
142
6.0
8.0
2
陈文强
2
3
1.0
1.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(11)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1998(1)
参考文献(1)
二级参考文献(0)
2002(1)
参考文献(1)
二级参考文献(0)
2013(2)
参考文献(2)
二级参考文献(0)
2014(1)
参考文献(1)
二级参考文献(0)
2015(2)
参考文献(2)
二级参考文献(0)
2016(2)
参考文献(2)
二级参考文献(0)
2017(2)
参考文献(2)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
多尺度
特征融合
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
主办单位:
华北计算技术研究所
出版周期:
半月刊
ISSN:
1002-8331
CN:
11-2127/TP
开本:
大16开
出版地:
北京619信箱26分箱
邮发代号:
82-605
创刊时间:
1964
语种:
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
期刊文献
相关文献
1.
基于高光谱图像的分类方法研究
2.
基于图像分割和LSSVM的高光谱图像分类
3.
基于DS聚类的高光谱图像集成分类算法
4.
基于DE-GEP的高光谱遥感图像分类
5.
基于医学高光谱显微图像光谱空间信息的血细胞分类
6.
基于多任务联合稀疏表示的高光谱图像分类算法
7.
基于自编码的高光谱图像波段加权分类网络研究
8.
基于改进的局部保持投影高光谱图像分类研究
9.
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
10.
基于降维Gabor特征和决策融合的高光谱图像分类
11.
结合空间信息的高光谱图像快速分类方法
12.
利用特征子空间评价与多分类器融合的高光谱图像分类
13.
基于空谱特征的核极端学习机高光谱遥感图像分类算法
14.
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
15.
基于加权K近邻和卷积神经网络的高光谱图像分类
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机工程与应用2022
计算机工程与应用2021
计算机工程与应用2020
计算机工程与应用2019
计算机工程与应用2018
计算机工程与应用2017
计算机工程与应用2016
计算机工程与应用2015
计算机工程与应用2014
计算机工程与应用2013
计算机工程与应用2012
计算机工程与应用2011
计算机工程与应用2010
计算机工程与应用2009
计算机工程与应用2008
计算机工程与应用2007
计算机工程与应用2006
计算机工程与应用2005
计算机工程与应用2004
计算机工程与应用2003
计算机工程与应用2002
计算机工程与应用2001
计算机工程与应用2000
计算机工程与应用2020年第9期
计算机工程与应用2020年第8期
计算机工程与应用2020年第7期
计算机工程与应用2020年第6期
计算机工程与应用2020年第5期
计算机工程与应用2020年第4期
计算机工程与应用2020年第3期
计算机工程与应用2020年第24期
计算机工程与应用2020年第23期
计算机工程与应用2020年第22期
计算机工程与应用2020年第21期
计算机工程与应用2020年第20期
计算机工程与应用2020年第2期
计算机工程与应用2020年第19期
计算机工程与应用2020年第18期
计算机工程与应用2020年第17期
计算机工程与应用2020年第16期
计算机工程与应用2020年第15期
计算机工程与应用2020年第14期
计算机工程与应用2020年第13期
计算机工程与应用2020年第12期
计算机工程与应用2020年第11期
计算机工程与应用2020年第10期
计算机工程与应用2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号