基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱图像高维度的特性和样本数量少的局限性,提出了一个多尺度跨层特征融合注意力机制(MCFFN-Attention)的方法.对高光谱图像进行PCA降维,然后以3D CNN为基础,将中心像素和其相邻像素作为整体输入到网络中,对不同卷积层得到的特征进行融合.同时对融合的低层特征进行空间注意力机制处理,对融合的高层特征进行通道注意力机制处理,分配给它们不同的权重来优化特征图.在印第安松树和帕维亚大学数据集上进行实验,结果表明此方法相对于CNN、3D CNN和M3D CNN方法,分类精度得到了提升.
推荐文章
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
基于DS聚类的高光谱图像集成分类算法
优势集
聚类
集成
支持向量机
高光谱图像分类
基于DE-GEP的高光谱遥感图像分类
遥感图像
演化算法
波段选择
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MCFFN-Attention的高光谱图像分类
来源期刊 计算机工程与应用 学科 工学
关键词 高光谱图像分类 多尺度 特征融合 注意力机制
年,卷(期) 2020,(24) 所属期刊栏目 图形图像处理
研究方向 页码范围 201-206
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1911-0102
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程文娟 45 142 6.0 8.0
2 陈文强 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
多尺度
特征融合
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导