基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对船舶主机零件磨损监测问题,将油液的光谱数据建立成为时间序列的函数,然后依据BP神经网络的分析手段,对主机内润滑油中的铁元素含量进行了预测,进行了预测模型的建立,最后,运用遗传算法改进了BP神经网络,提高了预测值的精度和稳定性.实验结果表明,遗传神经网络的预测精度显著高于BP网络,该方法可以用于船舶主机的磨损监测.
推荐文章
基于GRA和AHP的GRNN神经网络零件失效概率预测方法
广义回归神经网络
灰色关联分析
层次分析法
加权评价值
预测
基于图像处理与卷积神经网络的零件识别
零件识别
图像饱和度
种子填充法
尺度不变特征转换
卷积神经网络
基于灰色关联神经网络的主机热力参数监测研究
船用柴油机
热力参数
灰色关联分析
BP神经网络
信息熵加权
遗传算法
基于熵聚类模糊神经网络的轴类零件信息聚类分析
成组技术
聚类分析
模糊神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的船舶主机零件磨损监测方法的研究
来源期刊 中国设备工程 学科 交通运输
关键词 神经网络 遗传算法 船舶主机 监测
年,卷(期) 2020,(22) 所属期刊栏目 智能检测与诊断
研究方向 页码范围 150-151
页数 2页 分类号 U672
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (12)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
遗传算法
船舶主机
监测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国设备工程
半月刊
1671-0711
11-4623/N
大16开
北京市西城区月坛北小街2号院1号楼3层海运国际酒店二层
82-374
1985
chi
出版文献量(篇)
21366
总下载数(次)
45
总被引数(次)
19871
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导