摘要:
本文旨在验证作物生长监测诊断仪(crop growth monitoring and diagnosis apparatus, CGMD)监测双季稻长势指标的准确性, 建立基于CGMD的双季稻叶干重监测模型。通过实施8个不同早、晚稻品种和4个施氮水平的小区试验, 采用CGMD获取从分蘖期至灌浆期的冠层归一化植被指数(normalized difference vegetation index, NDVI)、差值植被指数(differential vegetation index, DVI)和比值植被指数(ratio vegetation index, RVI), 同步采用高光谱仪(analytical spectral devices field-spec handheld 2, ASD FH2)获取冠层光谱反射率计算NDVI、DVI和RVI; 分析2种光谱仪获取的植被指数间的相关关系, 验证CGMD的测量精度, 建立基于CGMD的叶干重监测模型, 并用独立试验数据对模型进行检验。结果表明: 早、晚稻叶干重随施氮水平的增加而增大, 随生育进程的推进呈“低—高—低”动态变化趋势; CGMD与ASD FH2获取的NDVI、DVI和RVI呈极显著相关, 相关系数(correlation coefficient, r)分别为0.9535~0.9972、0.9099~0.9948和0.9298~0.9926, 表明2种光谱仪获取的植被指数具有高度的一致性, CGMD可替代价格昂贵的ASD FH2获取NDVI、DVI和RVI。CGMD获取的3个植被指数相比, RVICGMD与叶干重的相关性最高; 基于RVICGMD的幂函数模型可准确地监测叶干重, 模型建立的决定系数(determination coefficient, R2)为0.8604~0.9216, 模型检验的均方根误差(root mean square error, RMSE)、相对均方根误差(relative root mean square error, RRMSE)和r分别为12.97~17.87 g m–2、4.88%~16.79%和0.9951~0.9992。与人工采样测定叶干重相比, 利用CGMD可实时准确地获取双季稻叶干重动态变化, 在双季稻长势精确诊断和丰产高效栽培中具有应用价值。