摘要:
为探索作物生长监测诊断仪(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)在不同株型双季稻长势指标监测应用的准确性和适用性,该研究开展了不同株型品种和施氮量的田间试验,采用CGMD获取冠层差值植被指数(Differential Vegetation Index,DVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和比值植被指数(Ratio Vegetation Index,RVI),并同步采用高光谱仪(Analytical Spectral Devices,ASD)获取冠层光谱反射率,构建DVI、NDVI和RVI;通过比较2种光谱仪获取的植被指数变化特征及相互定量关系,评价CGMD的监测精度,建立基于CGMD的不同株型双季稻叶面积指数(Leaf Area Index,LAI)监测模型,并用独立数据对模型进行检验.结果表明:不同株型品种的 LAI、DVI、NDVI 和 RVI 随施氮量增加而增大,随生育进程推进呈"低—高—低"的变化趋势;基于CGMD与ASD的DVI、NDVI和RVI间的决定系数(Determination Coefficient,R2)分别为0.959~0.968、0.961~0.966和0.957~0.959,表明CGMD具有较高监测精度,可替代价格昂贵的ASD获取DVI、NDVI和RVI.基于CGMD植被指数的单生育期LAI监测模型的预测效果优于全生育期,基于CGMD植被指数的松散型品种LAI监测模型的预测效果优于紧凑型品种;基于DVICGMD的线性方程可较好地预测LAI,模型R2为0.857~0.903,模型检验的相关系数(Correlation Coefficient,r)、均方根误差(Root Mean Square Error,RMSE)和相对均方根误差(Relative Root Mean Square Error,RRMSE)分别为0.950~0.984、0.18~0.43和3.95%~9.40%;基于NDVICGMD的指数方程可较好地预测LAI,模型R2为0.831~0.884,模型检验的r、RMSE和RRMSE分别为0.906~0.967、0.24~0.38和5.73%~9.16%;基于RVICGMD的幂函数方程可较好地预测LAI,模型R2为0.830~0.881,模型检验的r、RMSE和RRMSE分别为0.905~0.954、0.25~0.56和7.37%~9.99%.与传统人工取样测定LAI法相比,利用CGMD可实时无损监测双季稻LAI动态变化,可替代SunScan植物冠层分析仪获取双季稻LAI,在双季稻生产中具有推广应用价值.