基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The use of architectural morphological analysis and generative design is an impor-tant strategy to interpret current designs and to propose novel ones.Conventional morpholog-ical features are defined based on qualitative descriptions or manually selected indicators,which include subjective bias,thus limiting generalizability.The lack of public architectural morphological datasets also leads to setbacks in data-driven morphological analysis.This study proposed a new method for generating topology-based synthetic data via a rule-based system and for encoding morphological information to promote morphological classification via deep learning.A deep convolution network,LeNet,which was modified in the output layer,was trained with synthetic data,including five spatial prototypes (central,linear,radial,cluster,and grid).The performance of the proposed method was validated on 40 practical architec-tural layouts.Compared to the ground truth,the proposed method provided an encouraging accuracy of 97.5% (39/40).Interestingly,the most possible mistakes of the LeNet were also un-derstandable according to the architect's intuitive perception.The proposed method consid-ered the statistical and overall characteristics of the training samples.This work demonstrated the feasibility and effectiveness of the deep learning network trained with syn-thetic architectural patterns for morphological classification in practical architectural layouts.The findings of this work could serve as a basis for further morpho-topology studies and other social,building energy,and building structure studies related to spatial morphology.
推荐文章
基于移动Agent的Deep Web数据集成研究
Deep Web
数据集成
移动Agent
反馈
Deep web接口查询能力估计
查询接口
查询能力
Deep Web数据源自动分类
Deep Web
查询接口
朴素贝叶斯分类
基于改进Tri-training算法的中文问句分类
Tri-training算法
随机采样
问句分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Training deep convolution network with synthetic data for architectural morphological prototype classification
来源期刊 建筑学研究前沿(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 304-316
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (15)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
建筑学研究前沿(英文版)
季刊
2095-2635
10-1024/TU
北京市朝阳区惠新东街4号富盛大厦15层
eng
出版文献量(篇)
481
总下载数(次)
0
论文1v1指导