In this paper, we study the positive radial solutions for elliptic systems to the nonlinear BVP:<br /> <p> <img src="Edit_4da56369-d8f9-42d0-9650-c15af375d30c.bmp" alt="" />, where Δ<em>u</em> = <em>div</em> (<span style="white-space:nowrap;">∇</span><em>u</em>) and Δ<em>v</em> = <em>div</em> (<span style="white-space:nowrap;">∇</span><em>v</em>) are the Laplacian of <em>u</em>, <span style="white-space:nowrap;"><em>λ</em> </span>is a positive parameter, Ω = {<em>x</em> ∈ R<sup><em>n</em></sup> : <em>N</em> > 2, |<em>x</em>| > <em>r</em><sub>0</sub>, <em>r</em><sub>0</sub> > 0}, let <em>i</em> = [1,2] then <em>K<sub>i</sub></em> :[<em>r</em><sub>0</sub>,∞] → (0,∞) is a continuous function such that lim<sub><em>r</em>→∞</sub> <em>k<sub>i</sub></em>(<em>r</em>) = 0 and <img src="Edit_19f045da-988f-43e9-b1bc-6517f5734f9c.bmp" alt="" /> is The external natural derivative, and <img src="Edit_3b36ed6b-e780-46de-925e-e3cf7c6a125f.bmp" alt="" />: [0, ∞) → (0, ∞) is a continuous function. We discuss existence and multiplicity results for classes of <em>f </em>with a) <em>f<sub>i </sub></em>> 0, b) <em>f<sub>i </sub></em>< 0, and c) <em>f<sub>i </sub></em>= 0. We base our presence and multiple outcomes via the Sub-solutions method. We also discuss some unique findings. </p>