基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
跨领域情感分类任务旨在利用富含情感标签的源域数据对缺乏标签的目标域数据进行情感极性分析.由此,文中提出基于对抗式分布对齐的跨域方面级情感分类模型,利用方面词与上下文的交互注意力学习语义关联,基于梯度反转层的领域分类器学习共享的特征表示.利用对抗式训练扩大领域分布的对齐边界,有效缓解模糊特征导致错误分类的问题.在Semeval-2014、Twitter数据集上的实验表明,文中模型性能较优.消融实验进一步表明捕获决策边界的模糊特征并扩大样本与决策边界间距离的策略可提高分类性能.
推荐文章
视频会议系统跨域分布式升级方法研究
视频会议系统
软件升级
MD5
分布式计算
分布式协同
订阅发布
对抗长短时记忆网络的跨语言 文本情感分类方法
文本情感
跨语言
对抗
长短时记忆网络
共享特征
基于 SVA 的跨时钟域协议验证方法
亚稳态
跨时钟域
协议验证
断言
基于代理的跨域业务管理方法研究
代理
跨域
业务管理
认证授权
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于对抗式分布对齐的跨域方面级情感分析
来源期刊 模式识别与人工智能 学科 工学
关键词 跨域方面级情感分析 交互注意力 梯度反转 对抗式训练
年,卷(期) 2021,(1) 所属期刊栏目 研究与应用
研究方向 页码范围 87-94
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.202101009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (193)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
跨域方面级情感分析
交互注意力
梯度反转
对抗式训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导