基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Industrial Internet of Things (IoT) connecting society and industrial systems represents a tremendous and promising paradigm shift. With IoT, multimodal and heterogeneous data from in-dustrial devices can be easily collected, and further analyzed to discover device maintenance and health related potential knowledge behind. IoT data-based fault diagnosis for industrial devices is very helpful to the sustainability and applicability of an IoT ecosystem. But how to efficiently use and fuse this multimodal heterogeneous data to realize intelligent fault diagnosis is still a challenge. In this paper, a novel Deep Multimodal Learning and Fusion (DMLF) based fault diagnosis meth-od is proposed for addressing heterogeneous data from IoT environments where industrial devices coexist. First, a DMLF model is designed by combining a Convolution Neural Network (CNN) and Stacked Denoising Autoencoder (SDAE) together to capture more comprehensive fault knowledge and extract features from different modal data. Second, these multimodal features are seamlessly in-tegrated at a fusion layer and the resulting fused features are further used to train a classifier for re-cognizing potential faults. Third, a two-stage training algorithm is proposed by combining super-vised pre-training and fine-tuning to simplify the training process for deep structure models. A series of experiments are conducted over multimodal heterogeneous data from a gear device to veri-fy our proposed fault diagnosis method. The experimental results show that our method outper-forms the benchmarking ones in fault diagnosis accuracy.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Hilbert空间中K-fusion框架的稳定性
算子
Hilbert空间
K-fusion框架
fusion框架
Deep web接口查询能力估计
查询接口
查询能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Multimodal Learning and Fusion Based Intelligent Fault Diagnosis Approach
来源期刊 北京理工大学学报(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 172-185
页数 14页 分类号
字数 语种 英文
DOI 10.15918/j.jbit1004-0579.2021.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (130)
共引文献  (82)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(14)
  • 参考文献(0)
  • 二级参考文献(14)
2012(15)
  • 参考文献(0)
  • 二级参考文献(15)
2013(16)
  • 参考文献(1)
  • 二级参考文献(15)
2014(17)
  • 参考文献(0)
  • 二级参考文献(17)
2015(18)
  • 参考文献(2)
  • 二级参考文献(16)
2016(17)
  • 参考文献(2)
  • 二级参考文献(15)
2017(8)
  • 参考文献(3)
  • 二级参考文献(5)
2018(6)
  • 参考文献(5)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
北京理工大学学报(英文版)
季刊
1004-0579
11-2916/T
16开
北京海淀中关村南大街5号(白石桥路7号)
1992
eng
出版文献量(篇)
2052
总下载数(次)
1
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导