基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统水下目标检测算法识别精度低的问题,提出一种基于注意力机制的水下目标检测算法(feature refinement and attention mechanism network,FRANet).该算法采用特征融合模块和特征增强模块相结合的方式,使用卷积神经网络提取目标的多尺度特征.同时引入一种由锚框精化模块、空间注意力模块和目标检测模块组成的级联注意力机制方案,通过空间注意力机制解决目标类别的不平衡性,改善水下小目标的分类性能和回归性能.试验表明,利用FRANet算法对水下小目标进行识别的平均精度均值(mean average precision,mAP)达80.5%,验证了算法的有效性,为水下目标识别提供了一种新的研究思路与方法.
推荐文章
基于FAttention-YOLOv5的水下目标检测算法研究
F-CBAM
YOLOv5
FAttention-YOLOv5
水下目标检测
引入通道注意力机制的SSD目标检测算法
SSD算法
全局池化
通道注意力机制
膨胀卷积
PASCAL VOC数据集
基于注意力掩模融合的目标检测算法
计算机视觉
目标检测
注意力掩模
特征金字塔
多尺度检测
基于注意力机制的DGA域名检测算法
域名检测
注意力机制
门控循环单元(GRU)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于注意力机制的水下目标检测算法
来源期刊 扬州大学学报(自然科学版) 学科
关键词 深度学习 水下目标检测 注意力机制
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 62-67
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.19411/j.1007-824x.2021.01.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
水下目标检测
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
扬州大学学报(自然科学版)
季刊
1007-824X
32-1472/N
大16开
江苏省扬州市大学南路88号
28-48
1974
chi
出版文献量(篇)
1577
总下载数(次)
2
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导