基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对复杂地形条件下道路特征选取不具代表性,分割精度低的问题,提出了一种基于卷积神经网络(PPMU-net)的高分辨率遥感道路提取的方法.将3通道的高分二号光谱信息与相应的地形信息(坡度、坡向、数字高程信息)进行多特征融合,合成6通道的遥感图像;对多特征的遥感图像进行切割并利用卷积网络(CNN)筛选出含道路的图像;将只含道路的遥感图像送进PPMU-net中训练,构建出高分辨率遥感图像道路提取模型.在与U-net神经网络、PSPnet神经网络相比时,所提的方法在对高分辨率遥感道路提取时能够达到较好的效果,提高了复杂地形条件下道路分割的精度.
推荐文章
基于面向对象的高分辨率遥感影像道路提取研究
高分辨率
道路提取
面向对象
规则
基于分层特征提取和多尺度特征融合的高分辨率遥感影像水体提取深度学习算法
水体提取
高分辨率遥感影像
深度学习
多尺度特征融合
多尺度显著性引导的高分辨率遥感影像建筑物提取
遥感影像
建筑物提取
显著性检测
多尺度
随机森林
基于基元的高分辨率遥感建筑物提取研究
高分辨率遥感
建筑物提取
特征提取
识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PPMU-net的多特征高分辨率遥感道路提取
来源期刊 计算机工程与应用 学科 工学
关键词 高分二号 PPMU-net神经网络 多特征 复杂地形
年,卷(期) 2021,(1) 所属期刊栏目 图形图像处理
研究方向 页码范围 200-206
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1911-0169
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张永宏 82 541 12.0 18.0
2 田伟 23 185 7.0 13.0
3 王剑庚 10 45 3.0 6.0
4 严斌 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (50)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(7)
  • 参考文献(3)
  • 二级参考文献(4)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分二号
PPMU-net神经网络
多特征
复杂地形
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导