基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在密集部署的小小区网络中,考虑到小小区基站(SBS)的计算资源有限,提出了基于任务间串并依赖关系的协作卸载策略,以降低计算卸载任务的整体完成时延.首先,考虑将可以同时执行的并行任务卸载至不同的SBS,利用计算资源的分布式特点来降低整体时延,同时最大化单个SBS上的串行任务数量,以减小所需SBS的数目;然后,根据网络的负载均衡情况对2种场景进行讨论,联合考虑任务间的依赖关系、不同SBS的可用计算资源量和SBS与用户间的信道质量,分别引入最长路径理论和图着色算法以确定最佳任务卸载方案.仿真结果表明,与已有策略相比,所提策略可降低计算卸载任务的整体完成时延.
推荐文章
基于强化学习的移动边缘计算任务卸载方法
强化学习方法
Q-Learning算法
移动边缘
计算任务卸载
卸载模型
异构网络中小小区发现技术研究
异构网
小小区
小小区发现
一种基于协作型任务的网格资源调度算法
网格
AOV网
协作型任务
遗传模拟退火算法
基于依赖型任务和Sarsa(λ)算法的云计算任务调度
任务调度
强化学习
云计算
负载均衡
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于任务间依赖关系的小小区协作卸载策略
来源期刊 北京邮电大学学报 学科
关键词 小小区网络 移动边缘计算 协作卸载 时延优化
年,卷(期) 2021,(1) 所属期刊栏目 论文|PAPERS
研究方向 页码范围 72-78
页数 7页 分类号 TN929.5
字数 语种 中文
DOI 10.13190/j.jbupt.2020-115
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小小区网络
移动边缘计算
协作卸载
时延优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京邮电大学学报
双月刊
1007-5321
11-3570/TN
大16开
北京海淀区西土城路10号
2-648
1960
chi
出版文献量(篇)
3472
总下载数(次)
19
论文1v1指导