基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用1996-2015年中国的高空探测资料和地面观测数据,挑选发生降水的数十万个样本将其分为降雨和降雪两类事件,抽象为二分类问题,采用深度学习网络技术构建降水相态判识模型,并用2016 2017年的数据进行测试检验,针对2018年1月下旬中国一次大范围雨雪天气过程进行个例检验,在此基础上探讨了深度学习网络在降水相态判识和预报中的应用.主要结论如下:基于深度学习网络判识模型的判识准确率为98.2%,雨、雪的TS评分分别为97.4%和94.4%,相应空报率为1.7%和2.0%,漏报率为1.0%和3.7%,较传统指标阈值法的判识准确率有较大提高;个例检验显示,基于实况探空数据的模型判识结果与降水相态实况在全国基本保持一致,欧洲中期数值预报中心(ECMWF)的降水相态预报产品和模型的预报结果对全国的降水相态都表现出较好的预报能力,而对雨雪分界线的预报,模型的预报结果较ECMWF总体上更接近实况.测试结果表明,模型较好地提取了雨、雪降水相态的结构特征,深度学习网络在降水相态判识和预报中的应用具有可行性和一定的优势,可为降水相态的客观判识和预报提供重要技术支撑.
推荐文章
基于深度学习网络的风电场功率短期预测研究
风电场
数值天气预报
功率预测
深度学习网
人工神经网络在温度和降水预报中的应用
人工神经网络
BP网络
气温预报
降水预报
评分
基于深度学习网络的物联网非法入侵识别研究
深度学习网络
物联网案例
非法入侵
行为识别
特征向量
DDA法和Fisher判别法在潜在滑坡判识中的应用比较
距离判别分析法
Fisher判别分析法
潜在滑坡
判识指标
判识模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习网络在降水相态判识和预报中的应用
来源期刊 气象 学科
关键词 降水相态 深度学习 雨雪分界线 检验
年,卷(期) 2021,(3) 所属期刊栏目 论文|Articles
研究方向 页码范围 317-326
页数 10页 分类号 P456
字数 语种 中文
DOI 10.7519/j.issn.1000-0526.2021.03.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
降水相态
深度学习
雨雪分界线
检验
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
气象
月刊
1000-0526
11-2282/P
16开
北京中关村南大街46号
2-495
1950
chi
出版文献量(篇)
4405
总下载数(次)
12
总被引数(次)
77289
论文1v1指导