基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了消除深度神经网络中的冗余结构,找到具备较好性能和复杂度之间平衡性的网络结构,提出基于无标签的全局学习方法(LFGCL).LFGCL学习基于网络体系结构表示的全局剪枝策略,可有效避免以逐层方式修剪网络而导致的次优压缩率.在剪枝过程中不依赖数据标签,输出与基线网络相似的特征,优化网络体系结构.通过强化学习推断所有层的压缩率,采用深度确定性策略梯度算法探索最优网络结构.在多个数据集上的实验表明,LFGCL性能较优.
推荐文章
基于标签的强化学习推荐算法研究与应用
强化学习
推荐
标签
协同过滤
基于异联想记忆Hopfield网络的强化学习
联想记忆
Hopfield神经网络
强化学习
基于双向强化学习与动态码率调节的无线mesh网络协议
无线mesh网络
移动互联网
强化学习
用户体验质量
路由协议
码率调节
基于核方法的强化学习算法
强化学习
核方法
马尔科夫决策过程
Q-learning
mountiain car
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于强化学习的无标签网络剪枝
来源期刊 模式识别与人工智能 学科
关键词 深度神经网络(DNN) 网络剪枝 网络架构搜索 强化学习
年,卷(期) 2021,(3) 所属期刊栏目 “强化学习研究”|Research on Reinforcement Learning
研究方向 页码范围 214-222
页数 9页 分类号 TP183
字数 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.202103003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (10)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(7)
  • 参考文献(0)
  • 二级参考文献(7)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度神经网络(DNN)
网络剪枝
网络架构搜索
强化学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导