基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对通过挖掘用户的金融行为来改善金融领域的服务模式和服务质量的问题,本文提出了一种基于多路交叉特征的用户金融行为预测算法.根据数据包含的属性构建训练的特征,基于因子分解机模型(FM)利用下游行为预测任务对金融数据的特征进行预训练,获取数据特征的隐含向量.引入特征交叉层对金融数据的高阶特征进行提取,解决FM线性模型只能提取低阶特征的缺点.利用残差网络对金融数据的高阶特征进行提取,解决深度神经网络在提取金融数据高阶特征时由于网络层数过深而导致的梯度消失的问题.最后,将FM、特征交叉网络和残差网络整合为统一的多塔模型进行用户金融行为预测,并融合低阶特征与高阶特征进行用户金融行为预测.在多个数据集上对算法的有效性进行了实验验证,实验结果表明,所提出的算法能够取得较好的用户金融行为预测的准确率.
推荐文章
基于机器学习技术的网站用户行为预测
行为预测
logistic回归
用户行为
数据集分类
机器学习
留存分析
手机用户网络行为预测方法研究
手机网络
节电
背包算法
预测
在线社会网络用户的信息分享行为预测研究
在线社会网络
信息分享行为
预测
基于嵌入式向量和循环神经网络的用户行为预测方法
循环神经网络
深度学习
嵌入式向量
用户行为预测
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多路交叉的用户金融行为预测
来源期刊 智能系统学报 学科
关键词 行为预测 金融 多路交叉 残差 多塔模型 预训练 挖掘 联合训练
年,卷(期) 2021,(2) 所属期刊栏目 吴文俊人工智能科学技术奖论坛|Forum of Recipients of Wu Wenjun Artificial Intelligence Science and Technology Award
研究方向 页码范围 378-384
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.11992/tis.202006054
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (89)
共引文献  (21)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(7)
  • 参考文献(3)
  • 二级参考文献(4)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(5)
  • 参考文献(1)
  • 二级参考文献(4)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行为预测
金融
多路交叉
残差
多塔模型
预训练
挖掘
联合训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导