基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人工诊断玉米病害成本高、效率低、时延长等问题,提出一种基于深度残差网络的玉米病害识别网络TFL-ResNet.TFL-ResNet网络基于ResNet50网络,首先引入Focal Loss损失函数使模型专注于难分类的病害样本,其次将ResNet50网络在PlantVillage数据集训练好的参数迁移到改进网络上以完成构建.采用的玉米病害数据集涉及健康植株、大斑病、灰斑病、锈病4种标签,并使用旋转、翻转、平移等操作对数据集进行数据增强与扩充.对数据集进行训练和测试,与VGG16等对照模型相比,TFL-ResNet网络收敛速度更快、分类效果更好,平均识别准确率高达98.96%.通过观察精准率、召回率、混淆矩阵等评价指标得出TFL-ResNet网络具有较好的鲁棒性和泛化能力,可用于玉米病害智能诊断.
推荐文章
组合深度残差网络手势识别
手势识别
残差网络
肤色模型
深度学习
迁移学习
人机交互
基于深度残差网络的脱机手写汉字识别研究
手写汉字识别
深度学习
深度残差网络
End-to-End
卷积神经网络
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
基于深度残差网络ResNet的废料瓶分类系统
废料瓶分类
Opencv
深度学习
ResNet18
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度残差网络的玉米病害识别
来源期刊 江苏农业学报 学科
关键词 病害图像识别 深度残差网络 迁移学习
年,卷(期) 2021,(1) 所属期刊栏目 植物保护|PLANT PROTECTION
研究方向 页码范围 67-74
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-4440.2021.01.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (174)
共引文献  (121)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(15)
  • 参考文献(1)
  • 二级参考文献(14)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(13)
  • 参考文献(1)
  • 二级参考文献(12)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(15)
  • 参考文献(2)
  • 二级参考文献(13)
2017(29)
  • 参考文献(2)
  • 二级参考文献(27)
2018(25)
  • 参考文献(4)
  • 二级参考文献(21)
2019(11)
  • 参考文献(3)
  • 二级参考文献(8)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
病害图像识别
深度残差网络
迁移学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏农业学报
双月刊
1000-4440
32-1213/S
大16开
南京市孝陵卫钟灵街50号省农科院内
28-113
1985
chi
出版文献量(篇)
3989
总下载数(次)
8
总被引数(次)
36498
论文1v1指导