作者:
原文服务方: 南方农业学报       
摘要:
[目的]探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率.[方法]应用K means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共生矩阵从彩色分割图像中提取颜色和纹理特征参数,利用多重分形分析从灰度图像中提取病害的形状特征参数.[结果]根据提取的组合特征参数,利用量子神经网络进行玉米病害分类识别,对玉米灰斑病、玉米普通锈病和玉米小斑病的识别率分别达到92.5%、97.5%和92.5%,高于误差反向传播神经网络法的识别率(分别为90.0%、90.0%和92.5%).[结论]设计的方法可用于玉米叶部病害识别,并为其他农作物病害的智能识别提供借鉴.
推荐文章
基于卷积神经网络的玉米病害小样本识别研究
玉米病害
迁移学习
小样本
卷积神经网络
Focal Loss
混淆矩阵
概率神经网络在玉米叶部病害识别中的应用
玉米
叶部病害
特征提取
遗传算法
概率神经网络
基于遗传神经网络的飞行载荷参数识别
飞行载荷
飞行参数
BP
遗传算法
留出方法
基于BP神经网络的水稻卷叶识别
BP神经网络
水稻
卷叶
识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于量子神经网络和组合特征参数的玉米叶部病害识别
来源期刊 南方农业学报 学科
关键词 玉米病害 组合特征参数 量子神经网络 病害识别率 识别
年,卷(期) 2013,(8) 所属期刊栏目 植物保护·农业气象
研究方向 页码范围 1286-1290
页数 5页 分类号 S431.11|TP391.41
字数 语种 中文
DOI 10.3969/j:issn.2095-1191.2013.8.1286
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张飞云 许昌学院电气信息工程学院 28 93 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (195)
参考文献  (10)
节点文献
引证文献  (8)
同被引文献  (58)
二级引证文献  (23)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(3)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(9)
  • 引证文献(1)
  • 二级引证文献(8)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
玉米病害
组合特征参数
量子神经网络
病害识别率
识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南方农业学报
月刊
2095-1191
45-1381/S
大16开
1964-01-01
chi
出版文献量(篇)
7029
总下载数(次)
0
论文1v1指导