基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对齿轮实际工况复杂、故障特征难以提取的问题,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)复合熵值法的故障诊断方法.首先,采用VMD方法对不同工况下齿轮振动信号进行分解,并对分解过程中关键参数的选择进行了研究;其次,根据频域互相关系数准则筛选出可有效表征齿轮状态特征的固有模态函数(Intrinsic Mode Function,IMF)进行信号重构,为反映齿轮信号在不同尺度上的时-频细节复杂度特征,计算重构信号的样本熵、奇异值熵、功率谱熵和能量熵,形成高维状态特征向量;最后,将高维状态特征向量作为最小二乘支持向量机(Least Square Support Vector Machine,LS-SVM)的输入,对齿轮的工作状态和故障类型进行识别分类.通过实测齿轮信号的分析,结果表明,该方法能够有效实现齿轮故障的诊断.
推荐文章
基于VMD与多特征融合的齿轮故障诊断方法
变分模态分解
多特征融合
最小二乘支持向量机
排列熵
故障诊断
ABC-VMD和包络谱分析在齿轮故障诊断中的应用
变分模态分解
人工蜂群算法
包络谱分析
齿轮箱故障诊断
基于变分模态分解和符号熵的齿轮故障诊断方法
变分模态分解
符号熵
支持向量机
故障诊断
齿轮
齿轮箱复合故障诊断方法及其应用研究
齿轮箱
复合故障
变分模态分解
最大相关峭度解卷积
特征分离
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 VMD复合熵值法在齿轮故障诊断中的应用
来源期刊 组合机床与自动化加工技术 学科 工学
关键词 齿轮 故障诊断 变分模态分解 复合熵值法 最小二乘支持向量机
年,卷(期) 2021,(2) 所属期刊栏目 设计与研究
研究方向 页码范围 43-46,51
页数 5页 分类号 TH17|TG506
字数 语种 中文
DOI 10.13462/j.cnki.mmtamt.2021.02.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (268)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(12)
  • 参考文献(1)
  • 二级参考文献(11)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
齿轮
故障诊断
变分模态分解
复合熵值法
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
组合机床与自动化加工技术
月刊
1001-2265
21-1132/TG
大16开
大连市沙河口区新生路80号504室
8-62
1959
chi
出版文献量(篇)
9363
总下载数(次)
11
总被引数(次)
54585
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导