基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当回归模型误差服从非对称或非正态分布时,尤其是在重尾分布或分布受污染的情况下,如何检测纵向数据中的异常值是数据分析中的一个重要问题.为了克服非正态分布模型误差的影响,采用稳健的分位数方法对一类线性混合效应模型进行参数估计,并分别基于数据删除模型和均值漂移模型构造强影响点的诊断度量和异常值的检验统计量,以有效地检测强影响点和异常值点.在识别强影响点时,为了减轻计算负担,利用光滑逼近的方法给出了数据删除模型参数的一步近似估计,并据此构造出基于损失函数的距离和Cook距离.为了能够识别异常值点,首先构造出检验异常值点的Wald统计量,然后基于数据删除模型和均值漂移模型的系数估计的等价性,利用Bootstrap抽样得到检验的拒绝域.数值模拟结果表明,本文所提的诊断度量和检验统计量都能够很好地判断出强影响点和异常值点.最后应用本文方法针对化学实验纵向数据进行了影响分析.
推荐文章
一类非线性系统的扰动估计
观测器
扰动估计
两轴机械臂
一类拟线性粘弹性方程的空间衰减估计
空间衰减
拟线性粘弹性
Saint-Venant原理
双曲方程
一类双线性Hammerstein模型的集成辨识方法
双线性Hammerstein模型
集成辨识
非线性增益
一类非线性非均衡蛛网模型的动态分析
非线性
非均衡
蛛网模型
稳定性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一类线性混合效应模型分位数估计的影响分析
来源期刊 北京化工大学学报(自然科学版) 学科
关键词 线性混合效应模型 分位数估计 强影响点 异常值 Bootstrap抽样
年,卷(期) 2021,(3) 所属期刊栏目 管理与数理科学|Management and Mathematics
研究方向 页码范围 106-113
页数 8页 分类号 O212
字数 语种 中文
DOI 10.13543/j.bhxbzr.2021.03.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (13)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
线性混合效应模型
分位数估计
强影响点
异常值
Bootstrap抽样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京化工大学学报(自然科学版)
双月刊
1671-4628
11-4755/TQ
16开
北京市北三环东路15号
82-657
1972
chi
出版文献量(篇)
3271
总下载数(次)
7
总被引数(次)
27609
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导