基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统轨迹检测方法中的轨迹相似度仅从位置向量进行度量,忽略了轨迹数据的速度和时间特征,这导致轨迹检测结果无法全面反映实际状况,降低了检测结果的有效性.针对上述问题,提出一种面向多个特征向量的轨迹数据相似性度量及检测方法.该方法首先将轨迹数据映射到图模型描述的轨迹图中,每条轨迹是轨迹图的一个节点;针对各节点的速度、时间和空间特征,给出了适用其度量的三个核函数,通过加权求和实现三个特征向量的融合;然后采用每个节点的特征融合值来构建轨迹数据的相似矩阵及其对应的Laplacian矩阵,以此实现轨迹数据的相似性度量;最后,运用K-means聚类方法对轨迹图进行分割,通过对的图模型节点的划分来实现特征相似的轨迹数据划分到相同的类.在实验中,采用出租车和飓风数据,分别对算法的效率和准确性进行检验,实验结果显示本文提出算法是合理有效的.
推荐文章
基于多证据融合决策的间歇过程测量数据异常检测方法
间歇过程
D-S证据理论
冲突证据
多证据决策
测量数据异常检测
多特征融合的道路车辆检测方法
道路车辆检测
级联分类器
Haar-like
方向梯度直方图
AdaBoost
支持向量机
基于特征融合的多尺度窗口产品外观检测方法
机器视觉
质量检测
特征融合
多尺度滑动窗口
支持向量机
基于多特征融合的前方车辆检测方法研究
车辆检测
多阈值
阴影
边缘
分形盒子维数
对称性测度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 轨迹数据的多特征融合及检测方法
来源期刊 小型微型计算机系统 学科
关键词 轨迹检测 核函数 特征融合 相似性度量
年,卷(期) 2021,(2) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithm Research
研究方向 页码范围 264-270
页数 7页 分类号 TP311
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.02.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (61)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
轨迹检测
核函数
特征融合
相似性度量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导