基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Background and Aims: Post-hepatectomy liver failure (PHLF) is a severe complication and main cause of death in patients undergoing hepatectomy. The aim of this study was to build a predictive model of PHLF in patients under-going hepatectomy. Methods: We retrospectively analyzed patients undergoing hepatectomy at Zhongshan Hospital, Fudan University from July 2015 to June 2018, and ran-domly divided them into development and internal validation cohorts. External validation was performed in an independ-ent cohort. Least absolute shrinkage and selection operator (commonly referred to as LASSO) logistic regression was ap-plied to identify predictors of PHLF, and multivariate binary logistic regression analysis was performed to establish the predictive model, which was visualized with a nomogram. Results: A total of 492 eligible patients were analyzed. LAS-SO and multivariate analysis identified three preoperative variables, total bilirubin (p=0.001), international normal-ized ratio (p<0.001) and platelet count (p=0.004), and two intraoperative variables, extent of resection (p=0.002) and blood loss (p=0.004), as independent predictors of PHLF. The area under receiver operating characteristic curve (re-ferred to as AUROC) of the predictive model was 0.838 and outperformed the model for end-stage liver disease score, albumin-bilirubin score and platelet-albumin-bilirubin score (AUROCs: 0.723, 0.695 and 0.663, respectively; p<0.001 for all). The optimal cut-off value of the predictive model was 14.7. External validation showed the model could pre-dict PHLF accurately and distinguish high-risk patients. Con-clusions: PHLF can be accurately predicted by this model in patients undergoing hepatectomy, which may significantly contribute to the postoperative care of these patients.
推荐文章
IQQA(R)-Liver系统术前评估对精准肝切除的意义
IQQA(R)-Liver分析系统
AW4.4工作站
精准肝切除
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Elemental characteristics of lacustrine oil shale and its controlling factors of palaeo-sedimentary
Elemental geochemistry
Palaeosedimentary
Main controlling factors
Lacustrine oil shale
Triassic
Ordos Basin
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Development and Validation of a Nomogram Based on Perioperative Factors to Predict Post-hepatectomy Liver Failure
来源期刊 临床与转化肝病杂志(英文版) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目 Origianl Articles
研究方向 页码范围 291-300
页数 10页 分类号
字数 语种 英文
DOI 10.14218/JCTH.2021.00013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (9)
参考文献  (36)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(2)
  • 参考文献(0)
  • 二级参考文献(2)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(9)
  • 参考文献(3)
  • 二级参考文献(6)
2015(6)
  • 参考文献(6)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
临床与转化肝病杂志(英文版)
季刊
2225-0719
重庆市渝中区临江路74号
eng
出版文献量(篇)
411
总下载数(次)
0
论文1v1指导