传统的条件随机场(Conditional Random Fields,CRF)方法虽然可以容纳任意长度的上下文信息且特征设计灵活,但训练代价大、模型复杂度高,尤其在序列标注任务中由于需要计算整个标注序列的联合概率分布使其缺点更加突出.为此,结合一种结构化方式的支持向量机(Structured Support Vector Machine,SSVM)方法,根据黏着语的构词特征和语料的上下文信息进行词性标注研究,本模型相比传统SVM,通过附加额外的约束条件使特征函数能够拟合分布,进而用于处理不同领域内词性标注.通过相关黏着语词性标注实验结果显示,SSVM的词性标注方法相比传统的词性标注算法,准确率有了一定的提高.