基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在解析YOLOv4算法基础上,针对应用YOLOv4算法检测遥感影像桥梁目标任务中出现的训练耗时严重及精度较低缺陷,从算法训练过程和结构模块两方面进行优化:使用多尺度训练以及fp_16训练策略降低算法训练成本,并引入SE模块和CBAM模块两种注意力机制提升算法检测精度.消融实验结果表明:优化训练策略能够有效降低算法训练成本,同时提高目标检测精度;相比较CBAM模块,SE模块对算法训练成本增加较小却能收获显著的检测精度提升,优化训练策略并嵌入SE模块的算法,使高分桥梁数据集和DOTA桥梁数据集的平均准确率分别提升1.4%和3%.该优化算法兼具效率和精度优势,为桥梁目标检测难题提供有效解决方法.
推荐文章
引入通道注意力机制的SSD目标检测算法
SSD算法
全局池化
通道注意力机制
膨胀卷积
PASCAL VOC数据集
基于注意力机制的DGA域名检测算法
域名检测
注意力机制
门控循环单元(GRU)
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
基于注意力机制的音乐深度推荐算法
深度学习
注意力机制
音乐推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合训练加速及注意力机制的桥梁检测算法
来源期刊 海洋测绘 学科
关键词 遥感影像 桥梁目标检测 YOLOv4算法 训练策略优化 注意力机制
年,卷(期) 2021,(3) 所属期刊栏目 工程实践
研究方向 页码范围 57-61
页数 5页 分类号 P237.2
字数 语种 中文
DOI 10.3969/j.issn.1671-3044.2021.03.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感影像
桥梁目标检测
YOLOv4算法
训练策略优化
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
海洋测绘
双月刊
1671-3044
12-1343/P
大16开
天津市河西区友谊路40号
1981
chi
出版文献量(篇)
2577
总下载数(次)
13
总被引数(次)
16787
论文1v1指导