基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着深度学习、神经网络的兴起与发展,对于图像中的目标检测已经取得了巨大的进展.但是自然场景下的文本信息具有多样的形式和复杂的特点,通用的目标检测算法无法取得理想的效果,因此自然场景下的文本检测在计算机视觉以及机器学习领域仍然是一项具有挑战性的问题和未来的热点研究方向.根据当前学术界针对自然场景下的文本检测问题所提出的算法和思路,在EAST算法的主干网络PVANet的基础上通过引入注意力机制模块,使得提取文本目标特征时更加关注有用信息和抑制无用信息,从而有效改善原算法在预测长文本方向信息时视野不足的问题.实验结果显示,该方法在没有损失检测效率的同时提高了原算法的检测精度,并在一定程度上优于当前针对自然场景下的文本检测算法.
推荐文章
面向自然场景的中文文本检测
文本检测
特征金字塔
BAM注意力机制
可微二值化
AC Loss
引入通道注意力机制的SSD目标检测算法
SSD算法
全局池化
通道注意力机制
膨胀卷积
PASCAL VOC数据集
基于对象建议算法的自然场景文本检测
对象建议算法
最稳定极值区域
贝叶斯分类器
自然场景文本检测
融合注意力机制和区域生长的裂缝识别算法研究
数字图像
裂缝识别
区域生长
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 引入注意力机制的自然场景文本检测算法研究
来源期刊 计算机应用与软件 学科 工学
关键词 注意力机制 文本检测 深度学习 特征提取
年,卷(期) 2019,(9) 所属期刊栏目 人工智能与识别
研究方向 页码范围 198-203,269
页数 7页 分类号 TP301.6
字数 4668字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.09.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李捍东 贵州大学电气工程学院 65 245 10.0 12.0
2 牛作东 贵州大学电气工程学院 5 16 1.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (6)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (11)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(5)
  • 参考文献(4)
  • 二级参考文献(1)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
文本检测
深度学习
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导