基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对流量分类效果与实际情况存在偏差的问题,首先将多模态深度学习运用在流量分类中,通过利用多模态之间的互补性,剔除模态间的冗余,从而学习到更好的流量数据特征表示.然后,提出了一种基于多模态流量数据的检测和分类方法,对同一流量单位的不同模态输入分别采用卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)进行训练,以充分学习流量数据模态间和模态内信息的相互依赖性,克服现有单模态分类器的局限,从而支持更为复杂的现代网络应用场景.
推荐文章
基于水声环境空间中多模态深度融合模型的目标识别方法研究
水下目标识别
多模态
水声环境
深度模型
目标特性
多模态深度学习综述
多模态
深度学习
多神经网络
多模态表示
多模态传译
多模态融合
多模态对齐
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
一种基于深度学习的遥感图像分类及农田识别方法
遥感图像分类
农田识别
深度学习
卷积神经网络
识别模型
网络训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多模态深度学习的流量分类识别方法
来源期刊 无线电通信技术 学科
关键词 流量识别 流量分类 深度学习 多模态融合
年,卷(期) 2021,(2) 所属期刊栏目 工程实践及应用技术|Engineering Practice and Application Technology
研究方向 页码范围 215-219
页数 5页 分类号 TP393
字数 语种 中文
DOI 10.3969/j.issn.1003-3114.2021.02.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(6)
  • 参考文献(0)
  • 二级参考文献(6)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
流量识别
流量分类
深度学习
多模态融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线电通信技术
双月刊
1003-3114
13-1099/TN
大16开
河北省石家庄市中山西路589号
18-149
1972
chi
出版文献量(篇)
2815
总下载数(次)
6
总被引数(次)
11314
论文1v1指导