基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对结合深度学习模型的协同过滤算法未考虑关联数据的多维交互随时间动态变化的问题,该文提出一种融合时间交互学习和注意力长短期记忆网络的张量分解推荐模型(LA-NTF).通过采用基于注意力机制的长短期记忆网络从项目文本信息中提取项目的潜在向量,然后使用融合注意力机制的长短期记忆网络来表征用户—项目关系数据在时间上的多维交互,最后将用户—项目—时间三维张量嵌入多层感知器中,学习不同潜在因子之间的非线性结构特征,从而预测用户对项目的评分.在两个真实数据集上的大量实验表明,与其他传统方法和基于神经网络的矩阵分解模型相比,方根误差(RMSE)和平均绝对误差(MAE)指标均有明显提升,说明LA-NTF模型可显著改善各种动态关系数据的评级预测任务.
推荐文章
基于深层注意力的LSTM的特定主题情感分析
特定主题情感分析
深层注意力
LSTM
深度学习
自然语言处理
基于注意力机制的LSTM的语义关系抽取
文本信息
语义关系
关系抽取
LSTM
注意力机制
基于工厂数据的注意力LSTM网络辨识方法
化工过程建模
系统辨识
非线性动态模型
长短时记忆
数字化虚拟装置
一种基于自注意力机制的组推荐方法
群组推荐
自注意力机制
协同过滤
深度学习
融合策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合注意力LSTM的神经张量分解推荐模型
来源期刊 中文信息学报 学科
关键词 注意力机制 长短期记忆网络 时间交互学习 推荐系统 张量分解
年,卷(期) 2021,(5) 所属期刊栏目 信息抽取与文本挖掘|Information Extraction and Text Mining
研究方向 页码范围 91-100
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2021.05.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (4)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(8)
  • 参考文献(1)
  • 二级参考文献(7)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
长短期记忆网络
时间交互学习
推荐系统
张量分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导