基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统卷积神经网络训练需要大量数据、而热斑效应图像样本量较少的现状,构建一种深度卷积自编码网络模型用于小样本光伏热斑识别与定位.首先对原始光伏红外图像做预处理得到小样本数据集,然后构建一种以卷积神经网络为基础、结合自编码器的深度卷积自编码网络模型.该模型能自动学习并提取小样本图像中的有效特征,提高识别准确率.实验结果表明,针对小样本光伏热斑图像数据集,深度卷积自编码网络模型比传统卷积神经网络在测试集上的识别准确率高出了 7.98%,且具有更强的泛化能力和鲁棒性.
推荐文章
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
深度稀疏自编码网络融合多LBP特征用于单样本人脸识别
稀疏自编码
单样本人脸识别
空-频特征
多特征融合
二维离散小波变换
数据库
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积自编码网络的小样本光伏热斑识别与定位
来源期刊 华北电力大学学报(自然科学版) 学科
关键词 热斑效应 图像识别 小样本 卷积神经网络 自编码器
年,卷(期) 2021,(4) 所属期刊栏目
研究方向 页码范围 91-98
页数 8页 分类号 TP18|TM615
字数 语种 中文
DOI 10.3969/j.ISSN.1007-2691.2021.04.11
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (139)
共引文献  (66)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(15)
  • 参考文献(1)
  • 二级参考文献(14)
2016(17)
  • 参考文献(1)
  • 二级参考文献(16)
2017(18)
  • 参考文献(1)
  • 二级参考文献(17)
2018(14)
  • 参考文献(4)
  • 二级参考文献(10)
2019(10)
  • 参考文献(5)
  • 二级参考文献(5)
2020(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
热斑效应
图像识别
小样本
卷积神经网络
自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华北电力大学学报(自然科学版)
双月刊
1007-2691
13-1212/TM
大16开
北京市德胜门外朱辛庄北农路2号
18-138
1974
chi
出版文献量(篇)
2661
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导