基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对转炉炼钢出钢合金化过程合金的加入量偏差较大的问题,为更精确地控制合金加入量,以某钢厂冶炼HRB400钢出钢过程加入硅锰合金为例,建立基于极限学习机算法的Mn元素收得率预测模型,并引入正则化方法和改进粒子群算法(IPSO)对极限学习机算法进行优化,以提高模型的泛化能力和预测精度.研究结果表明:Mn元素收得率预测相对误差在5%和3%以内的命中率分别为95%和80%,准确性高于BP神经网络及人工经验的预测结果.照此种方式控制硅锰合金加入量可以满足成品钢的成分要求,且每炉次硅锰合金加入量较人工经验值平均减少20 kg,可带来每年400万元的经济效益,能够为现场生产提供参考.
推荐文章
基于改进极限学习机的微信热点预测
微信热点
预测模型
极限学习机
验证性测试
权值更新
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
改进极限学习机的电子音乐分类模型
音乐分类
核主成分分析
极限学习机
音乐特征
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进极限学习机的转炉出钢合金化锰收得率预测模型
来源期刊 中南大学学报(自然科学版) 学科
关键词 转炉 出钢合金化 元素收得率 正则化极限学习机 改进粒子群算法 预测模型
年,卷(期) 2021,(5) 所属期刊栏目 矿业工程? 冶金工程? 环境工程? 化学与化学工程? 材料科学与工程|Mining Engineering, Metallurgical Engineering, Environmental Engineering,Chemistry and Chemical Engineering, Materials Scienc
研究方向 页码范围 1399-1406
页数 8页 分类号 TF758
字数 语种 中文
DOI 10.11817/j.issn.1672-7207.2021.05.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (18)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
转炉
出钢合金化
元素收得率
正则化极限学习机
改进粒子群算法
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南大学学报(自然科学版)
月刊
1672-7207
43-1426/N
大16开
湖南省长沙市中南大学校内
42-19
1956
chi
出版文献量(篇)
7515
总下载数(次)
5
总被引数(次)
79127
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导