基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
处理机器阅读理解任务时,识别其中没有答案的问题是自然语言处理领域的一个新的挑战.该文提出U-Net模型来处理这个问题,该模型包括3个主要成分:答案预测模块、无答案判别模块和答案验证模块.该模型用一个U节点将问题和文章拼接为一个连续的文本序列,该U节点同时编码问题和文章的信息,在判断问题是否有答案时起到重要作用,同时对于精简U-Net的结构也有重要作用.与基于预训练的BERT不同,U-Net的U节点的信息获取方式更多样,并且不需要巨大的计算资源就能有效地完成机器阅读理解任务.在SQuAD 2.0中,U-Net的单模型F1得分72.6、EM得分69.3,U-Net的集成模型F1得分74.9、EM得分71.4,均为公开的非基于大规模预训练语言模型的模型结果的第一名.
推荐文章
基于双向循环U-Net模型的脑卒中病灶分割方法
深度学习
脑卒中病灶分割
CGRU;
U-Net
双向特征融合
多视面融合
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
一种针对机器阅读理解中答案获取的序列生成模型
答案获取
序列模型
OOV
覆盖机制
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 U-Net:用于包含无答案问题的机器阅读理解的轻量级模型
来源期刊 中文信息学报 学科
关键词 机器阅读理解 SQuAD 注意力机制
年,卷(期) 2021,(2) 所属期刊栏目 问答与对话|Question Answering and Dialogue System
研究方向 页码范围 99-106
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2021.02.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器阅读理解
SQuAD
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导