基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了研究Gabor滤波器在卷积神经网络中的性能和特征提取能力,提出了模拟视觉神经元特性的Gabor卷积神经网络计算模型.利用符合视觉神经元感知特性的Gabor滤波器作为建议神经网络的卷积核,将Gabor滤波器与CNN相结合,从而构建Gabor卷积神经网络.实验采用3个公共图像数据集进行图像分类任务,验证GaborConv网络的各项性能,并与经典的VGG16进行对比分析.实验结果表明,Gabor卷积神经网络的图像分类精度相对CNN有所提高,其收敛速度也明显加快,同时大量减少网络训练参数数量,释放计算机的内存.
推荐文章
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gabor卷积神经网络的图像分类算法研究
来源期刊 广西大学学报(自然科学版) 学科
关键词 Gabor滤波器 卷积神经网络 Gabor卷积神经网络 图像分类
年,卷(期) 2021,(3) 所属期刊栏目 计算机与电子信息科学
研究方向 页码范围 675-682
页数 8页 分类号 TP18|TP391
字数 语种 中文
DOI 10.13624/j.cnki.issn.1001-7445.2021.0675
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1946(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(2)
  • 参考文献(2)
  • 二级参考文献(0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Gabor滤波器
卷积神经网络
Gabor卷积神经网络
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西大学学报(自然科学版)
双月刊
1001-7445
45-1071/N
大16开
广西南宁市大学路100号广西大学西校园学报编辑部
28832转3
1976
chi
出版文献量(篇)
4586
总下载数(次)
8
总被引数(次)
23980
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导