基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对中文评论分类问题,采用朴素贝叶斯算法进行深入研究.首先,根据中文评论分类的需求设计了朴素贝叶斯分类器.然后,使用weka(Waikato Environment for Knowledge Analysis)以不同特征提取方式对其功能性进行了对比分析.通过一系列的实验数据的横向对比表明,在朴素贝叶斯分类器下采用集成特征选取时文本分类的准确率最佳,准确率达97.65%,验证了朴素贝叶斯分类器在处理中文评论分类问题的可应用性.
推荐文章
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
一种基于情感词典和朴素贝叶斯的中文文本情感分类方法
文本情感分类
朴素贝叶斯
情感词典
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于朴素贝叶斯算法的中文评论分类
来源期刊 云南电力技术 学科 工学
关键词 朴素贝叶斯 文本分类 机器学习 自然语言处理 特征选择
年,卷(期) 2021,(z2) 所属期刊栏目
研究方向 页码范围 12-18
页数 7页 分类号 TM74
字数 语种 中文
DOI 10.3969/j.issn.1006-7345.2021.z2.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
朴素贝叶斯
文本分类
机器学习
自然语言处理
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南电力技术
双月刊
1006-7345
53-1117/TM
大16开
昆明市经济技术开发区云大西路中段105号电力科技园电力研究院206室
1973
chi
出版文献量(篇)
4381
总下载数(次)
5
总被引数(次)
8632
论文1v1指导