基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
红外图像检测技术因具有非接触、快速等优点,被广泛应用于电力设备的监测与诊断中,而对设备快速精确地检测定位是实现自动检测与诊断的前提.与普通目标的可见光图像相比,电力设备的红外图像可能存在背景复杂、对比度低、目标特征相近、长宽比偏大等特征,采用原始的YOLOv3模型难以精确定位到目标.针对此问题,该文对YOLOv3模型进行改进:在其骨干网络中引入跨阶段局部模块;将路径聚合网络融合到原模型的特征金字塔结构中;加入马赛克(Mosaic)数据增强技术和Complete-IoU(CIoU)损失函数.将改进后的模型在四类具有相似波纹外观结构的电力设备红外图像数据集上进行训练测试,每类的检测精度均能达到92%以上.最后,将该文方法的测试结果与其他三个主流目标检测模型进行对比评估.结果表明:不同阈值下,该文提出的改进模型获得的平均精度均值优于Faster R-CNN、SSD和YOLOv3模型.改进后的YOLOv3模型尽管在检测速度上相比原YOLOv3模型有所牺牲,但仍明显高于其他两种模型.对比结果进一步验证了所提模型的有效性.
推荐文章
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv3的电力设备红外目标检测模型
来源期刊 电工技术学报 学科
关键词 电力设备检测 YOLOv3 卷积神经网络 红外图像
年,卷(期) 2021,(7) 所属期刊栏目 “电力装备智能感知与智能终端”专题
研究方向 页码范围 1389-1398
页数 10页 分类号 TM85
字数 语种 中文
DOI 10.19595/j.cnki.1000-6753.tces.201324
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (175)
共引文献  (22)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(15)
  • 参考文献(0)
  • 二级参考文献(15)
2015(22)
  • 参考文献(2)
  • 二级参考文献(20)
2016(14)
  • 参考文献(1)
  • 二级参考文献(13)
2017(28)
  • 参考文献(0)
  • 二级参考文献(28)
2018(38)
  • 参考文献(2)
  • 二级参考文献(36)
2019(20)
  • 参考文献(7)
  • 二级参考文献(13)
2020(6)
  • 参考文献(3)
  • 二级参考文献(3)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力设备检测
YOLOv3
卷积神经网络
红外图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电工技术学报
半月刊
1000-6753
11-2188/TM
大16开
北京市西城区莲花池东路102号天莲大厦10层
6-117
1986
chi
出版文献量(篇)
8330
总下载数(次)
38
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导