基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long short-term memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法.该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力.在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据.
推荐文章
基于LSTM模型的短期负荷预测
短期负荷预测
LSTM神经网络
工业用户
深度学习
基于添加Dropout层的CNN-LSTM网络短期负荷预测
Dropout技术
长短期记忆网络
卷积网络
负荷预测
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
一种基于小波变换和ARIMA的短期电价混合预测模型
电价预测
小波变换
ARIMA模型
时间序列分析
电价突变
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法
来源期刊 中国电机工程学报 学科
关键词 最大信息系数 相关性分析 长短期记忆(LSTM)神经网络 改进多层级门控LSTM 短期电价预测
年,卷(期) 2021,(1) 所属期刊栏目 电力市场|Electricity Market
研究方向 页码范围 135-146,中插12
页数 13页 分类号 TM71
字数 语种 中文
DOI 10.13334/j.0258-8013.pcsee.191731
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (37)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(14)
  • 参考文献(0)
  • 二级参考文献(14)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(10)
  • 参考文献(2)
  • 二级参考文献(8)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最大信息系数
相关性分析
长短期记忆(LSTM)神经网络
改进多层级门控LSTM
短期电价预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国电机工程学报
半月刊
0258-8013
11-2107/TM
大16开
北京清河小营东路15号 中国电力科学研究院内
82-327
1964
chi
出版文献量(篇)
16022
总下载数(次)
42
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导