基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Aluminium alloys are commonly used as lightweight materials in the automotive industry. This non-ferrous family of metallic alloys offers a high versatility of properties and designs. To reduce weight and improve safety, high strength-to-weight ratio alloys (e.g. 6XXX and 7XXX), are increasingly implemented in vehicles. However, these alloys exhibit low formability and experience considerable springback during cold forming, and are therefore hot formed. During forming, severe adhesion (i.e. galling) of aluminium onto the die surface takes place. This phenomenon has a detrimental effect on the surface properties, geometrical tolerances of the formed parts and maintenance of the dies. The effect of surface engineering as well as lubricant chemistry on galling has not been sufficiently investigated. Diamond-like carbon (DLC) and CrN physical vapour deposition (PVD) coated steel have been studied to reduce aluminium transfer. However, the interaction between lubricants and PVD coatings during hot forming of aluminium alloys is not yet fully understood. The present study thus aims to characterise the high temperature tribological behaviour of selected PVD coatings and lubricants during sliding against aluminium alloy. The objectives are to first select promising lubricant-coating combinations and then to study their tribological response in a high-temperature reciprocating friction and wear tester. Dry and lubricated tests were carried out at 300 ℃using a commercial polymer lubricant. Tests using DLC, CrN, CrTiN, and CrAlN coated tool steel were compared to uncoated tool steel reference tests. The initial and worn test specimen surfaces were analysed with a 3-dimensional (3D) optical profiler, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS) as to understand the wear mechanisms. The results showed formation of tribolayers in the contact zone, reducing both friction and wear. The stability of these layers highly depends on both the coatings' roughness and chemical affinity towards aluminium. The DLC and CrN coatings combined with the polymer lubricant were the most effective in reducing aluminium transfer.
推荐文章
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
Hydrodynamic characteristics of Wujiangdu Reservoir during the dry season—a case study of a canyon r
Canyon reservoir
Hydrodynamic characteristics
A transition zone
Wujiang River
Variations of trace elements under hydrological conditions in the Min River, Eastern Tibetan Plateau
Trace elements
Concentration-discharge relationship
Tibetan Plateau
River
An experimental study of interaction between pure water and alkaline feldspar at high temperatures a
Alkaline feldspar
Autoclave
High-temperature and high-pressure experiments
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 High temperature tribological behaviour of PVD coated tool steel and aluminium under dry and lubricated conditions
来源期刊 摩擦(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 Research Articles
研究方向 页码范围 802-821
页数 20页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
摩擦(英文)
双月刊
2223-7690
10-1237/TH
北京市海淀区清华大学建筑学院
eng
出版文献量(篇)
309
总下载数(次)
0
总被引数(次)
195
论文1v1指导