基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
会话式序列推荐旨在根据短期匿名行为序列预测该用户近期行为,因为该任务设定考虑了用户偏好的变化而备受学术和工业界关注.现有方法集中于以单任务模式预测下一交互对象,忽略了行为时间预测辅助任务中的额外语义.在面向事件、地点的一般序列推荐问题中,有少数方法以并行方式同时预测下一交互对象及对应时间,然而这并不完全契合用户先产生交互意图再选择合适时间的实际情况.为缓解上述问题影响,本文提出了一种基于序列式多任务学习的会话式序列推荐方法,具有两方面特色.首先,该方法通过将下一交互对象预测结果作为下一时间预测的输入,赋予两个任务顺序依赖性.相比于传统的并行式交互对象和时间预测方式该方法耦合性更强.其次,本文开发了一种经过改进的双向时间间隔感知自注意力方法,使得会话中每个位置可以融合来自左右两侧的交互对象及时间间隔信息.相比于过去的单向会话式序列推荐方法增强了建模会话上下文的能力,该方法有利于更好地刻画用户兴趣表征.本文在Tianchi电商数据集、Lastfm音乐数据集以及Foursquare地点行为轨迹数据集上进行了实验.结果 表明:(1)所提出方法在常用序列推荐指标上一致优于所采用的比较方法.特别地,在NDCG@5评价指标上比最好的基线方法TiSASRec平均提高13.51%;(2)序列式多任务学习和双向时间间隔感知自注意力机制对于预测性能均能带来正面提升.
推荐文章
基于集成预测的稀有时间序列检测
异常检测
离群点
时间序列
神经网络集成
带有时间窗的车辆路径问题优化
车辆路径问题
遗传算法
时间窗
多目标规划
带有时间戳的安全电子交易协议
安全电子交易
时间戳
电子商务
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 带有时间预测辅助任务的会话式序列推荐
来源期刊 计算机学报 学科
关键词 会话式序列推荐 交互对象预测 时间预测 序列式多任务学习 自注意力网络
年,卷(期) 2021,(9) 所属期刊栏目 人工智能
研究方向 页码范围 1841-1853
页数 13页 分类号 TP18
字数 语种 中文
DOI 10.11897/SP.J.1016.2021.01841
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
会话式序列推荐
交互对象预测
时间预测
序列式多任务学习
自注意力网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机学报
月刊
0254-4164
11-1826/TP
大16开
中国科学院计算技术研究所(北京2704信箱)
2-833
1978
chi
出版文献量(篇)
5154
总下载数(次)
49
总被引数(次)
187004
论文1v1指导