基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决被跟踪目标因尺度、形状变化导致的跟踪效果变差的问题,本文提出一种基于孪生区域候选网络的目标跟踪模型,对孪生区域候选网络(SiamRPN)优化,升级特征提取基准网络,采取多层特征融合模式,引入注意力机制模块增强位置特性和通道特性,并应用检测领域提出的GA-RPN替换原有的RPN(区域候选网络).OTB2015和VOT2018数据集的实验结果显示,本文模型对OTB2015数据集成功率为0.678,准确率为0.882,与SiamRPN相比分别提高了3.7%,6.2%;对VOT2018数据集检测帧率为31FPS,平均重叠期望为0.402,与SiamRPN相比提高了4.9%,测试结果表明本文模型具备较高的跟踪精度和较强的抗干扰性,满足实时性需求.
推荐文章
基于Tiny Darknet全卷积孪生网络的目标跟踪
目标跟踪
孪生网络
深度卷积神经网络
轻量级
基于孪生网络结构的目标跟踪算法综述
目标跟踪
孪生网络
深度学习
基于运动区域检测的运动目标跟踪算法
模板匹配
区域检测
目标跟踪
光流法
视频图像
一种基于孪生网络的舰船目标跟踪方法
孪生网络
目标跟踪
舰船目标
SiameseNet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于孪生区域候选网络的目标跟踪模型
来源期刊 小型微型计算机系统 学科
关键词 深度学习 孪生网络 目标跟踪 区域候选网络 注意力机制
年,卷(期) 2021,(4) 所属期刊栏目 图形与图像技术|Graphics and Image Technology
研究方向 页码范围 755-760
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.04.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (36)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
孪生网络
目标跟踪
区域候选网络
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导