基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决图像去雾后颜色偏暗以及去雾不彻底等问题,本文提出了一种基于多尺度融合卷积神经网络的图像去雾算法.以有雾图像为输入,首先经过预处理模块由单尺度卷积层提取有雾图像浅层信息,然后设计多尺度映射模块实现深度特征学习以及深、浅层特征融合,由反卷积模块还原图像尺寸,通过卷积操作得到有雾图像对应的粗透射率图.采用双边滤波法优化输出细透射率图,最后依据大气散射模型复原出无雾图像.实验结果表明:本文方法在合成有雾图像和自然有雾图像上均优于其他算法,其中合成有雾图像上的峰值信噪比(PSNR)、结构相似性(SSIM)能分别达到29.238、0.950.本文所提算法可以有效地避免去雾图像颜色偏暗、失真等不足,提高了图像去雾性能并体现出良好的视觉效果.
推荐文章
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于多尺度卷积神经网络的立体匹配算法研究
多尺度
卷积神经网络
匹配代价
代价聚合
基于卷积神经网络的图像去雾算法
卷积神经网络
多尺度映射
反卷积
大气散射模型
激活函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度融合卷积神经网络的图像去雾算法
来源期刊 液晶与显示 学科
关键词 图像去雾 卷积神经网络 多尺度融合 图像复原 大气散射模型
年,卷(期) 2021,(10) 所属期刊栏目 图像处理|Image Processing
研究方向 页码范围 1420-1429
页数 10页 分类号 TP391.41
字数 语种 中文
DOI 10.37188/CJLCD.2020-0347
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (46)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(8)
  • 参考文献(2)
  • 二级参考文献(6)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像去雾
卷积神经网络
多尺度融合
图像复原
大气散射模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液晶与显示
月刊
1007-2780
22-1259/O4
大16开
长春市东南湖大路3888号
12-203
1986
chi
出版文献量(篇)
3141
总下载数(次)
7
总被引数(次)
21631
论文1v1指导