基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
方面级情感分析是针对一个评论中涉及多种方面类别时的情感分析,现有方法通常利用方面级数据集在神经网络模型上直接进行训练,但已标注的方面级训练数据规模较小,造成模型不能充分学习而性能受限.为解决上述问题,本文利用迁移学习的思想,将数据量较大的文档级数据进行情感分析模型的预训练,进而获得丰富的文本语义、句法信息和情感特征,然后通过本文设计的目标函数及注意力融合方法,将文档级情感分析模型中的注意力权重融合到方面级情感分析模型中,从而使方面级文本情感分析性能提升.将该模型在SemE-val2014数据集上进行实验,实验结果中的准确率和F1值均高于对比模型,证明了本文模型的有效性.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
基于深层注意力的LSTM的特定主题情感分析
特定主题情感分析
深层注意力
LSTM
深度学习
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于知识迁移和注意力融合的方面级文本情感分析
来源期刊 信号处理 学科
关键词 自然语言处理 情感分析 方面类别 迁移学习 注意力机制
年,卷(期) 2021,(8) 所属期刊栏目 论文|Papers
研究方向 页码范围 1384-1391
页数 8页 分类号 TP391.9
字数 语种 中文
DOI 10.16798/j.issn.1003-0530.2021.08.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(2)
  • 参考文献(1)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自然语言处理
情感分析
方面类别
迁移学习
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导