基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源.提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型.基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达.实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
基于BERT-AWC的文本分类方法研究
文本分类
注意力机制
卷积神经网络
混合注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BERT和双通道注意力的文本情感分类模型
来源期刊 数据采集与处理 学科 工学
关键词 文本情感分析 深度学习 基于变换器的双向编码器表征技术 双通道 注意力 双向门控循环单元
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 642-652
页数 11页 分类号 TP391
字数 6225字 语种 中文
DOI 10.16337/j.1004-9037.2020.04.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李烨 上海理工大学光电信息与计算机工程学院 44 133 7.0 9.0
2 谢润忠 上海理工大学光电信息与计算机工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (23)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本情感分析
深度学习
基于变换器的双向编码器表征技术
双通道
注意力
双向门控循环单元
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
论文1v1指导